Molecular cloning of a putative cationic amino acid transporter from rat brain.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney.

Uptake of long-chain and aromatic neutral amino acids into cells is known to be catalyzed by the Na(+)-independent system L transporter, which is ubiquitous in animal cells and tissues. We have used a Xenopus oocyte expression system to clone the cDNA of a system L transporter from a rat kidney cDNA library. The 2.3-kilobase cDNA codes for a protein of 683 amino acids. The transporter has four ...

متن کامل

The putative Cationic Amino Acid Transporter 9 is targeted to vesicles and may be involved in plant amino acid homeostasis

Amino acids are major primary metabolites. Their uptake, translocation, compartmentation, and re-mobilization require a diverse set of cellular transporters. Here, the broadly expressed gene product of CATIONIC AMINO ACID TRANSPORTER 9 (CAT9) was identified as mainly localized to vesicular membranes that are involved in vacuolar trafficking, including those of the trans-Golgi network. In order ...

متن کامل

Molecular cloning and characterization of a new multispecific organic anion transporter from rat brain.

A cDNA encoding the new member of the multispecific organic anion transporter family, OAT3, was isolated by the reverse transcription-polymerase chain reaction cloning method. Degenerate primers were designed based on the sequences conserved among OAT1, OAT2, and organic cation transporter 1 (OCT1), and reverse transcription-polymerase chain reaction was performed using rat brain poly(A)+ RNA. ...

متن کامل

Cloning and characterization of a potassium-coupled amino acid transporter.

Active solute uptake in bacteria, fungi, plants, and animals is known to be mediated by cotransporters that are driven by Na+ or H+ gradients. The present work extends the Na+ and H+ dogma by including the H+ and K+ paradigm. Lepidopteran insect larvae have a high K+ and a low Na+ content, and their midgut cells lack Na+/K+ ATPase. Instead, an H+ translocating, vacuolar-type ATPase generates a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Japanese Journal of Pharmacology

سال: 1994

ISSN: 0021-5198

DOI: 10.1016/s0021-5198(19)51028-9